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Understanding RSL
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Definition:

* Recurring Slope Lineae, RSL, are visible streaks observed on
the faces of some craters and other steep landforms.
1.  Occur periodically
2. Lengthen as a function of time

3. Fade

« Dry flows, triggered by dust devils, impacts, or seismic events
are not RSL

Provenance Hypotheses:

1. Dry Flow

2. Volatile-triggered Dry Flow
a) CO, triggered
b) H,O triggered

3.  Wet Flow Dry Flow
a) Deliguescence (salts absorb atmospheric water) [ )
b) Shallow source (e.g. melting of near-surface ice) Wet Flow

: —
c) Deep source (e.g. ground water release from aquifer) R
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[ Without proximal or contact measurements, we cannot disambiguate a ]




Identified RSL
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= = = = o 474 RSL-like (>=1 characteristic)
Sites with RSL Characteristics

69 RSL (all 3 characteristics)

o RSL + Gullies

RSL Characteristics Observed RSL Characteristics

1. Lengthenincrementally 3. Recur @ RSL-like o 2 characteristics
2. Fade © 1characteristic ~ © 3 characteristics




ldentification of Promising Sites
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- . . i @ 33 RSL Accessible with
Sites with Landing Constraints M2020 Landing

Longitude Latitude Stereo DTM # Images Context Landable
2 km crater; craters
Midlatitudes 1 everywhere, otherwise flat
1.4 km crater, secondaries
Midlatitudes 3 everywhere

Meridiani 3 3 km crater

Meridiani 4 950m crater; great flat lava
2.3 km crater; only top
Garni Crater landing

Mid-valles possible flat
Valles 22 valley ellipse

9.5 km crater (did not
Andapa recur yet)

7 km crater; rough ejecta;
Selevac roving required




Study Focus Craters
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” _.;’*;
Lat/Long**4.7,-5.3

Feature for Traverse Route
Average wall slope: ~30°

Max wall slope: ~40°

Feature for Traverse
Route
Average wall slope: ~24°

Max wall slope: ~35°

bl Mt 5 v wi e

Minimum distance to RSL:
600 mt, 170 m|

Minimum distance to RSL:
1,200 m?, 360 m|

Terrain: Polygonal ripples,
dunes, bedrock, outcrop

Terrain: Boulder field, loose
sand, bedrock, outcrop

Terrain: Loose sand,
bedrock, outcrop




Principal Mobility Challenges: Roughness and
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Fig: Boulder field. Square shows Video: Video created in JPL WebGIS tool using 25 cm/p HIRISE imagery.
approximate footprint of Curiosity DEM created at ~ 1 m/p. Shows: Ascent of crater rim, descent into crater over
rover ~ 1 km traverse distance



Mobility System Categories
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Approximately 30 concepts of operations (CONOPS) considered

that broadly fit into the following 6 categories:

A.  Ground Ascent (crater only)
B. Ground Descent (rim only)
C. Balloon (Not discussed; feasible)
D. Helicopter (both crater and rim)
E. Missile (both crater and rim)

F.  Tether Riders (Not discussed; likely infeasible)



Ground Ascent
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Provides good vantage . Terrain-dependent mobility system design

Heritage (higher starting TRL) . Terrain properties uncertainty

Large payload carrying capacity . Slip, entrenchment, static stability risks

Multiple measurement locations . Moderate risk of altering measurement site (avalanche)

Technologies/techniques considered v—/\

Wheeled
Tracked \
Climbing (limbed, gecko grippers) \\

Walking &\\\\\/v J\\

Push-roll

Variable normal force (air assisted) J
Hopping
Electrostatic adhesion

N~ WNE

Sand-filled crater floor. Ripples Boulder fields
and dunes present.

Unconsolidated granular media

10



Slip (%)

Ascending Unconsolidated Slopes
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Rule of Thumb:

The slope a vehicle can ascend may be

approximated as the arctangent of its Drawbar

Pull Coefficient:
6 = tan"1(DPC)

A 35° slope would require a DPC of 0.7,

approximately 3X that of MSL/MER/M2020 at

20% slip
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Curiosity slope climbing performance. Heverly et
al., JFR, 2013, 10.1002/rob.21481
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Lightweight tracked vehicle slope climbing
performance. Senatore and lagnemma, ISTVS,
2013
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Push-roll locomotion using SCARAB rover.
Moreland, Creager et al, CMU.
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Rim Descent

Controlled descent with precise placement 1. Tether management on rough terrain

Capable of carrying high-mass payloads 2. Somewhat reduced viewshed prior to entry
Multi-site measurements enabled

Reduced terrain-dependence and risk

H ~Flat

[l ~Decimeter scale
~Meter scale

B ~Multi-meter scale

Viewshed analysis for rim-descent options. While 90 — 100 % of
the crater wall is visible from inside the crater, 60 — 75% remains
visible from the rim

5 B ;
/ Rim/acceg
JPL Axel rover concept art during descent into an RSL-

bearing crater

Typical Crater rim roughness with challenges to tether management
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Helicopter
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Lower complexity (fewer assets) than rover-based . Helicopter scaling on Mars is not well understood
delivery option . Control of helicopter + pendulum dynamics

Reduces control concerns during close approach to . Up to 8 km flight each way from lander on a single
crater wall charge
Provides improved view-shed prior to aerial . Large mass and diameter for helicopter
deployment . Longer longer tether for payload deployment
Tether and winching mechanism mass reduces payload
capacity

High, but possible, energy

req.
Gross Vehicle Mass (kg) kg
Non-convergent 120
designs (white
space) 140
E 8000 5 \ - 100
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Payload Mass (kg) 10 2 Disk Diameter (m)

Gross Vehicle Mass
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Missiles
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Obviates need to scale crater wall . Significant disruption of measurement site
Rapid approach . High loads on payload and subsystems
Less subject to weather events (wind) . Assumes a-priori knowledge of surface strength
Requires consumables
Accuracy may be limited

Ascent 15
\\ Boost 200
Brake 195
i x\\\ Hover (155s) 55.5
N\ Flyaway 50
Total nominal  515.5
Control 155
| Total 670 |
Component Mass [kg]
3000 | | | | v, Payload 20.0
——Boost Avionics 10.0
E" MECO, ~170 :gfaisé Structure 10.0
M 2000 F m/s, s 5 N Propulsive dry 14.7
< t=13s : econ .
o Q%%alfse altitude ignition, ~160 Flyaway Prop dry margin 3.7
S . m mis, Propellant 19.4
g 1000 t=70s 7 Pressurant 0.4
Ascent to ~ 3m Vertical thrust,—» GLOM 78.2
/ zero velocity,
| 1 1 4 80 S |

0 | | t=
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Downranae. m 14



Concept Rankings
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AverageRanking®Results
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